
Journal of Cellular
Biochemistry

PROSPECT
Journal of Cellular Biochemistry 110:1288–1298 (2010)
Twist-ing Cell Fate: Mechanistic Insights Into the Role of
Twist in Lineage Specification/Differentiation and
Tumorigenesis
*
E

R

P

D. Cakouros,1,2 R.M. Raices,3 S. Gronthos,1,2 and C.A. Glackin3*
1Mesenchymal Stem Cell Group, Department of Haematology, Institute of Medical and Veterinary Science/Hanson
Institute, Frome Road, Adelaide 5000, South Australia, Australia

2Centre for Stem Cell Research, Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
3Department of Neurosciences, Beckman Research Institute of City of Hope, Duarte, California 91010-3011
ABSTRACT
Bone marrow-derived mesenchymal stem cells (MSCs), are multipotent cells that give rise to multiple lineages including osteoblasts,

adipocytes, muscle, and fibroblasts. MSCs are useful for clinical applications such as cell therapy because they can be isolated from an

individual and expanded for use in tissue repair, as well as other therapeutic applications, without immune rejection. However, one of the key

problems in the use of MSCs for these applications is the efficiency of these cells to engraft and fully regenerate damaged tissues. Therefore, to

optimize this process, a comprehensive understanding of the key regulators of MSCs self-renewal and maintenance are critical to the success

of future cell therapy as well as other clinical applications. The basic helix loop helix transcription factor, Twist, plays a master regulatory role

in all of these processes and, therefore, a thorough understanding of the mechanistic insights in the role of Twist in lineage specification/

differentiation and tumorigenesis is vital to the success of future clinical applications for the therapeutic use of MSCs. In this article, we

highlight the basic mechanisms and signaling pathways that are important to MSC fate, maintenance, and differentiation, as well as the

critical role that Twist plays in these processes. In addition, we review the known literature suggesting a critical role for Twist in the generation

of cancer stem cells, as this information may contribute to a broader understanding of stem cell biology and stem-cell-based therapeutics. J.

Cell. Biochem. 110: 1288–1298, 2010. � 2010 Wiley-Liss, Inc.
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T he basic helix loop helix (bHLH) family of transcription

factors can be categorized into three classes. Class A bHLH

proteins, also known as E proteins, are ubiquitously expressed and

form heterodimers with other tissue-specific bHLH proteins. Class B

bHLH proteins are tissue specific and include members of the MyoD

protein family and Twist. Class C bHLH proteins contain a leucine

zipper motif C-terminal to the bHLH motif. In addition, members of

the Id family of proteins lacking a DNA-binding basic region N-

terminal to the bHLH motif act as negative regulators of Class A and

B bHLH factors by sequestering these proteins and preventing them

from forming functional complexes [Massari and Murre, 2000].

In mammals there are six Twist orthologs: Twist1, Twist2, Hand1,

Hand 2, Paraxis, and Scleraxis. The bHLH domain is an evolutionary

conserved motif consisting of a short stretch of basic amino acids

followed by two amphipathic a-helices separated by a loop [Massari

and Murre, 2000]. The a-helices participate in protein–protein
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dimerization with other bHLH proteins, which results in a

juxtaposition of the basic domain and creates a DNA-binding

motif that binds to the E-Box consensus sequence (CANNTG)

[Massari and Murre, 2000].

Twist was originally discovered in Drosophila as essential for the

onset of gastrulation and mesoderm formation [Simpson, 1983;

Leptin, 1991]. Twist mutant Drosophila embryos fail to develop

mesodermally derived organs, have abnormal head involution, and

the embryo is twisted in the egg. When misexpressed in other

tissues, Twist induced mesoderm-specific formation of muscle in

inappropriate locations [Castanon et al., 2001]. In mice, Twist is

expressed in the mesoderm, somites, cranial mesenchyme, limb bud

mesenchyme, tooth bud, and sutural tissues of the skull [Wolf et al.,

1991]. Twist null mice die at embryonic day 11.5 due to failure of

neural tube closure and defects in the head mesenchyme, somites,

and limb buds [Chen et al., 1995]. Heterozygous mice are viable but
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display abnormal craniofacial structures, poor suture growth,

asymmetrical facial skeleton, and preaxial polydactyly of the hind

limb [Bourgeois et al., 1998]. These observations suggest that Twist-

1, and possibly Twist-2, inhibit osteoblast differentiation.

In humans, loss of function heterozygous mutations in the twist

gene are associated with an autosomal-dominant craniosynostosis

disorder known as Saethre–Chotzen Syndrome (SCS) [Reardon and

Winter, 1994; el Ghouzzi et al., 1997; Johnson et al., 1998]. Over 75

mutations have been identified in SCS patients, involving large

deletions and mostly point mutations that cluster near the DNA-

binding domain [Gripp et al., 2000; Corsi et al., 2002; Jabs, 2004].

SCS is characterized by premature fusion of cranial sutures, low

frontal hairline, facial asymmetry, eyelid ptosis, and limb defects

such as polydactyly, brachydactyly, and syndactyly [Howard et al.,

1997]. It has been proposed that these effects are due to accelerated

bone growth and increased differentiation, as Twist mutant cells

show an increased ability to form bone-like nodular structures with

increased expression of osteoblastic markers, alkaline phosphatase

(ALP), and type 1 collagen [Yousfi et al., 2001]. However, the

mechanisms by which Twist regulates the processes of osteogenic

development and postnatal bone homeostasis remain to be

determined.

Following initiation of the osteogenic pathway via the osteogenic

master regulatory transcription factor, Runx2 [Ducy et al., 1997] a

number of complementary genes, such as the zinc-finger

transcription factors osterix and Krox-20, the homeobox-contain-

ing transcription factors, Msx2 and Dlx5, and various members of

the Fos family of transcription factors (c-Fos, FosB, d-FosB, Fra-1,

and Fra-2) help maintain and regulate osteoblast differentiation

[Shalhoub et al., 1989, 1992; McCabe et al., 1996; Inoue et al., 1999;

Fang et al., 2001; Nakashima et al., 2002; Balint et al., 2003; Harris

et al., 2003; Shah et al., 2004]. In contrast, little is known about the

molecular mechanisms that determine the fate of the musculoske-

letal precursors (Fig. 1) known as mesenchymal stem cells (MSC)

[Pittenger et al., 1999; Gronthos et al., 2003b] during asymmetrical

cell division. In particular, whether MSCs progress either towards a

particular cell lineage or remain as a multi-potential stromal stem

cell. Moreover, it is not clear which critical genes regulate the
Fig. 1. Proposed stromal hierarchy of cellular differentiation. Mesenchymal

stem cells (MSCs) undergo clonal expansion and differentiation via the

upregulation of master regulatory genes associated with various stromal

lineages.
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maintenance of multi-potential MSC populations throughout the

life of an individual, or following ex vivo expansion.

TWIST: MECHANISMS GOVERNING
MUSCULOSKELETAL DIFFERENTIATION

An important mechanistic insight into the action of Twist was

discovered in 2004 by examination of skull development [Bialek

et al., 2004]. In this report, it was noted that the master osteogenic

regulator, Runx2, was expressed, together with Twist, at E12 in cells

of the future temporal and parietal bones; however, no bone

differentiation had occurred at this stage. By E14, however, the levels

of Twist had decreased, Twist expression exhibited a mutually

exclusive pattern with Runx2, and osteogenic differentiation was

evident. This gave birth to the idea that Twist might function to

antagonize the action of Runx2. Genetic interactions were then

investigated and demonstrated that mice heterozygous for Twist and

Runx2 have a normally shaped skull and intraparietal bones and no

premature fusionof the coronal sutures.AlthoughTwist homozygous

and heterozygous knockoutmice showed no difference in expression

of Runx2, Twist inhibited Runx2-mediated transactivation of a

Runx2-driven reporter, and this was mediated by the c-terminal

region of Twist, known as the Twist box. Furthermore, this domain

interacted with the Runt domain of Runx2 and reduced the ability of

Runx2 to bind DNA (Fig. 2). This mechanism was recently also

described in dentin-forming odontoblasts involved in tooth devel-

opment,which are closely akin toosteoblasts, and is involved in tooth

development. Mice heterozygous for Twist showed an earlier onset of

dentin matrix, increased ALP activity, and pulp stones within the

pulp. When crossed with Runx2þ/� mice to produce Twist/Runx2

heterozygotes, this phenotype was found to be completely rescued

[Galler et al., 2007]. Furthermore, invivoevidence for the roleofTwist

on Runx2 function in regulating osteoblast differentiation is

illustrated in the Charlie Chaplin (CC/þ) mouse strain, which has a

single amino acid substitution in the Twist box. These mice exhibit

craniosynostosiswith irregular lamboidal andcoronal sutures. CC/CC

micehave short limbs andpolydacytly of thehind limbsbutnoneural

tube defect. This suggests that although the above-described

mechanism of Twist action is an essential part of regulating

osteogenesis, it does not account for the complete story and does not

rule out the possibility that Twist may interact with other proteins

involved inosteogenesis. This idea is supportedbygenome-wideChiP

studies ofDrosophila Twist showing that Twist can bind tomore than

500 regions of the genome.

Reinforcing the notion that Twist inhibits the action of

transcription factors controlling tissue specificity is the fact that

murine Twist inhibits MyoD transactivation by sequestering E-

proteins and preventing the formation of E-protein–MyoD com-

plexes and by inhibiting the action of MEF2, which results in strong

inhibition of skeletal muscle differentiation. Murine Twist directly

interacts with the myogenic bHLH protein, MyoD, via its basic DNA-

binding domain and inhibits MyoD-driven transcription and muscle

differentiation [Hamamori et al., 1997]. In addition, Twist can

interact with other myogenic bHLH proteins, such as myf5,

myogenin, and MRF4 [Hamamori et al., 1997], and these
TWIST IN LINEAGE DETERMINATION AND TUMORIGENESIS 1289



Fig. 2. Model depicting possible molecular mechanisms responsible for potentiating the osteoblastic lineage. This model postulates that Runx2 and Twist negatively regulate

each other by protein–protein and protein–DNA interactions resulting in the observed shift from proliferation to differentiation (dotted arrows). We further postulate that

degradation of Twist occurs through Id/Twist heterodimerization, which targets Twist for degradation, instead of allowing it to bind DNA. The absence of Twist then allows for

differentiation to proceed. Additionally, both Runx2 and Twist regulate Id-1 by protein–DNA interactions and both processes are regulated by BMP2 signaling.
interactions are vital to other MSC lineages such as skeletal muscle.

However, the mechanism by which Twist inhibits MyoD-mediated

transcription has not been defined, although Twist has been shown

to inhibit the histone acetylase activity of the MyoD coactivators,

pCAF and CBP [Spicer et al., 1996]. In agreement with this, Dermo, a

bHLH protein very closely related to Twist, has been shown to

interact with MyoD via the HLH and C-terminal domains, thereby

inhibiting transcription [Gong and Li, 2002]. This repression was

partially alleviated by the histone deacetylase (HDAC) inhibitor

Trichostatin A (TSA). Moreover, the same effect was evident with

Twist, suggesting that Twist and Dermo repress transcription by

recruiting HDAC to the complex.

Twist can also function in parallel with the transcription factor

Msx2, which is required for calvarial bone growth. In humans, Msx2

loss of function mutations exhibit skull vault ossification defects

that are similar to the defects seen in individuals with Twist

happloinsufficiency. In agreement with these observations, Msx2

and Twist double knockout mice have fewer neural crest cells

expressing osteoblast markers, demonstrating cooperativity in

differentiation and proliferation of the skeletogenic mesenchyme

[Ishii et al., 2003]. This reduction in neural crest cells expressing

osteoblast markers coincides with a reduction in the level of Runx2/

ALP-expressing cells. However, the molecular mechanism by which

this cooperation takes place remains unclear. Both Msx2 and Twist

can inhibit transcription and interact in living cells. Therefore, they

could potentially cooperate by repressing a common gene whose

downregulation is required for differentiation of frontal bone

skeletogenic mesenchyme [Ishii et al., 2003].

The diverse mechanisms that Twist employs to alter transcription

are further evident with the finding that dimer choice and

posttranslational modifications can regulate Twist function. Twist
1290 TWIST IN LINEAGE DETERMINATION AND TUMORIGENESIS
can form homodimers and heterodimers with E-type proteins.

Moreover, the ratio of Twist to Id proteins can influence dimerization.

The use of cranial sutures as a model revealed that Twist homodimers

are predominant at the osteogenic fronts and influence genes such as

FGFR2 and periostin, whereas Twist/E protein heterodimers are

predominant in the mid-sutures and inhibit osteogenesis. Dimer

preference is altered in Twist heterozygous mice, favoring an increase

in homodimers and expansion of the osteogenic fronts [Connerney

etal., 2006]. In supportof this, thepremature suture fusionexhibited in

Twist heterozygousmicewas inhibitedby increasing the expressionof

E2A or decreasing Id expression and favoring Twist/E2A heterodimer

formation. Recently, it was discovered that a serine–threonine residue

onthecarboxylendof thebasicDNA-bindingdomain in the twistgene

ishighlyconserved fromDrosophila tohumans. This residue is present

in theTwist orthologsHand1and2and isphosphorylatedbyPKA/PKC

anddephosphorylatedbyPP2A[Firulli andConway, 2008].Moreover,

mutation of this site in the twist gene results in SCS and the

hypophosphorylated form displays altered dimer preferences com-

pared to wild-type Twist [Firulli et al., 2005]. These findings

suggest that Twist phosphorylation may be crucial for dimerization

and regulation of gene transcription. This also suggests that

Twist:Hand2 heterodimers may regulate the neural crest lineages

that give rise to intramembraneous calverial bone in the skull and

mandible.

SIGNALING PATHWAYS IN
LINEAGE DETERMINATION

Given the complexity and plethora of information regarding

signaling networks in MSC lineage specification, we will briefly
JOURNAL OF CELLULAR BIOCHEMISTRY



mention the key players. A more comprehensive outline is given

elsewhere [Karsenty and Wagner, 2002]. The Wnt family, which

consists of 19 and 18 Wnt genes in the human and mouse genomes,

respectively [Akiyama, 2000], is essential in embryonic bone

development and formation [Westendorf et al., 2004]. Wnt signaling

is required for limb bud initiation, patterning, and limb morpho-

genesis [Kengaku et al., 1998]. Wnt proteins bind to Frizzleds (Fzs),

which are seven-span transmembrane receptor proteins, and

lipoprotein receptor-related proteins 5 and 6 (LRP-5/6), and activate

at least four distinct intracellular cascades: the Wnt/b-catenin, Wnt/

Ca2þ, Wnt planar cell polarity, and Wnt/PKA pathways [Moon et al.,

2002].

TheWnt/b-catenin pathway is the canonical pathway andWnt-1,

2, 3, 3b, 4, 8, and 10b activate this pathway. In the absence of Wnt,

b-catenin is phosphorylated at its amino terminal end, polyubi-

quitinated by bTRCP1/2, and degraded by a multi-protein complex

consisting of glycogen synthase kinase (GSK-3b), adenomatous

polyposis coli, and axin [Ikeda et al., 1998; Eastman and Grosschedl,

1999; Behrens, 2000]. In the presence of Wnt, the intracellular

protein Dishevelled (Dvl) is activated. Dvl inhibits GSK-3b and

causes dissociation of the multi-protein complex [Seto and Bellen,

2004]. Because b-catenin cannot then be targeted for degradation, it

translocates to the nucleus and together with TCF/LEF family

proteins activates transcription.

In addition to influencing cartilage development (by Wnt genes

like Wnt-3a, 4, and 5a) [Hartmann and Tabin, 2001], Wnt-mediated

regulation in bone mass was intensely studied after the initial

description of mutations in one of the Wnt receptors, LRP-5, in

patients with osteoporosis pseudoglioma syndrome [Gong et al.,

2001]. Mutations in LRP-5 cause severe osteoporosis and recurrent

fractures [Hartikka et al., 2005]. Wnt-3a promotes proliferation,

suppresses osteoblast differentiation of adult MSCs [Boland et al.,

2004], and promotes bone morphogenetic protein-2 (BMP-2)-

mediated chondrogenesis in a murine mesenchymal cell line

[Fischer et al., 2002a]. Wnt-10b, however, can promote osteoblas-

togenesis by inducing expression of the osteogenic-associated

transcription factors, Cbfa1/Runx2, Dlx-5, and Osterix. A study

implanting mature chick-derived chondrocytes by intramuscular

injection found that gain of function of the downstream Wnt

effector molecule, b-catenin, which mediates TCF/LEF signaling,

accelerated chondrocyte maturation and bone formation while

inactivation resulted in suppression [Kitagaki et al., 2003]. An

essential role for b-catenin in BMP-2-induced endochondral

ossification was established by implanting recombinant BMP-2

intramuscularly into mice, which induced endochondral bone

formation. This activated b-catenin-mediated TCF/LEF transcrip-

tion, and the use of conditional null alleles of b-catenin to inactivate

the Wnt/b-catenin pathway inhibited chondrogenesis and bone

formation [Chen et al., 2007].

Several BMPs (BMP-2, -4, and -7) potently induce osteogenesis,

chondrogenesis, and adipogenesis, and inhibit myogenesis of MSCs.

BMP, TGF-b, and Wnt pathway can promote osteogenesis while

simultaneously suppressing adipogenesis by downregulating adi-

pogenic transcription factors such as C/EBPa and PPARg [Kang

et al., 2007; Salazar et al., 2008; Locklin et al., 1998]. Over-

expression of BMPs can induce ectopic bone formation [Wozney
JOURNAL OF CELLULAR BIOCHEMISTRY
and Rosen, 1998]. BMPs function through type I and II receptors and

activation of these receptors induces phosphorylation and hetero-

dimerization of intracellular Smad1/5/8 (R-Smads) with Smad4 and

other transcription factors, leading to gene expression [Massague,

1998].

Interestingly, Smad4, a downstream component of BMP-2

signaling, has been found to interact with b-catenin and TCF/

LEF, providing a point of convergence for these two pathways

[Fischer et al., 2002b]. Using a rat fracture model, microarray studies

have revealed Wnt genes including b-catenin, Dvl, and LRP-5 to be

upregulated after injury [Hadjiargyrou et al., 2002; Zhong et al.,

2006]. This parallels the stabilized tibia fracture mouse model in

which TCF-dependant transcription of Wnt signaling genes

including Wnt-4, 5b, 10b, 11, and 13, and LRP-6 is activated,

and illustrates the importance of the Wnt pathway in fracture repair

[Chen et al., 2007]. This model also illustrates the complexity of Wnt

signaling, as bone healing was repressed in mice that conditionally

expressed both null and stabilized b-catenin alleles. In contrast, a

dramatic enhancement in bone healing was apparent in mice that

conditionally expressed an active form of b-catenin [Chen et al.,

2007].

Wnt/b-catenin promotes osteogenesis only when progenitor cells

have been committed to the osteoblast lineage, and its role is

dependent on the cell’s differentiation state. b-Catenin is also

essential in determining whether mesenchymal progenitor cells will

become osteoblasts or chondrocytes, as genetic inactivation of b-

catenin causes ectopic chondrogenesis at the expense of osteogen-

esis during intramembraneous and endochondral ossification [Day

et al., 2005]. Along similar lines, another study found that

constitutive Wnt signaling at an injury site promotes progenitor

cell proliferation and reduces osteoblast differentiation, whereas

inhibiting the Wnt pathway also resulted in a decrease in osteoblast

differentiation [Kim et al., 2007]. These observations reveal that the

Wnt pathway and the strength of the signal may have an initial role

in proliferation of progenitor cells and that once the cells are

committed to the osteoblast lineage, Wnt becomes crucial for

osteoblast differentiation.

The transforming growth factor-beta (TGF-b) family of cytokines,

which includes the BMP family, is crucial for embryogenesis, tissue

homeostasis, proliferation, differentiation, apoptosis, migration,

ECM remodeling, immune functions, and tumor invasion [Biere and

Moses, 2006; Li et al., 2008; Massague, 2008]. TGF-b belongs to the

same family as BMPs and also binds to type I and II receptors,

resulting in the phosphorylation of Smad2 and 3, which associate

with Smad4 and enter the nucleus to regulate gene expression

[Verrecchia and Mauviel, 2002]. BMP-2 induces expression of the

transcription factor Dlx5, an immediate early response gene [Lee

et al., 2003]. Dlx5 then induces expression of Runx2 and promotes

osteogenesis [Ryoo et al., 2006; Holleville et al., 2007]. TGF-b

stimulates chondrogenesis in vitro and in vivo and inhibits

adipogenesis in human bone marrow stromal fibroblasts [Locklin

et al., 1998]. A microarray approach revealed that TGF-b can

stimulate expression of Wnt2, 4, 5a, 7a, 10a, and the coreceptor

LRP5 and b-catenin to promote osteo/chondrogenesis while

inhibiting adipogenesis [Zhou et al., 2004]. Therefore, Wnt may

synergize with TGF-b to inhibit adipogenesis of hMSCs, supporting
TWIST IN LINEAGE DETERMINATION AND TUMORIGENESIS 1291



the notion that Wnt signaling is one of the mediators of TGF-b-

induced osteo/chondrogenic differentiation.

Another important osteo/chondrogenic signaling cascade

involves the Hedgehog family of proteins, including Indian

hedgehog (Ihh), which exert their effects through Patched (PTCH)

and Smoothened (Smo) [Denef et al., 2000]. When Ihh binds PTCH,

Smo is activated and transduces the signal into the cytoplasm,

thereby activating the Gli transcription factor family [Koebernick

and Pieler, 2002], which is important in skeletogenesis [Hui and

Joyner, 1993; Mo, 1997]. Mice deficient for Ihh show failure of

osteoblast development in endochondral bones [Hilton et al.,

2005]. In addition, Gli2 upregulates Runx2 expression and

enhances the osteogenic action of Runx2 via direct physical

interaction [Shimoyama et al., 2007]. These studies suggest that

Ihh regulates osteoblast differentiation of mesenchymal cells

through upregulation of the expression and function of Runx2 by

Gli2.

SIGNALING PATHWAYS REGULATED BY TWIST

The mechanisms by which Twist influences MSC differentiation

are not fully understood. That Twist uses multiple mechanisms to

influence MSC differentiation is apparent; however, its mode of

action is still not fully understood. Apart from inhibiting lineage-

specific transcription factors, Twist can interact with and alter

many signaling pathways. For example, it is well established that

increases in Twist expression can inhibit osteoblast differentiation

in vitro, and craniosynostosis is associated with activating

mutations in the fibroblast growth factor receptor FGFR genes

and haploinsufficiency of Twist-1 [Cunningham et al., 2007].

FGFR2 is detected in the osteogenic fronts of cranial sutures and

this expression is extended to the mid-suture in Twist hetero-

zygous mice [Connerney et al., 2006], suggesting enhanced FGF

signaling in the sutures of these mice. Because BMP signaling is

active in the osteogenic fronts [Warren et al., 2003], it was

predicted that Twist heterozygous mice would exhibit enhanced

BMP signaling. In agreement with this, in Twist heterozygous

mice, which favor formation of Twist/Twist homodimers (T/T) as

opposed to Twist/bHLH E protein heterodimers (T/E), the levels of

noggin, a repressor of BMP signaling, were decreased [Connerney

et al., 2008]. BMPs signal through Smad proteins, resulting in the

initial phosphorylation of Smad1, 5, and 8, followed by the

formation of complexes with Smad4, which activate transcription.

In Twist heterozygous mice, phospho-Smads 1/5/8 were found in

the osteogenic fronts and the mid-sutures, suggesting an increase

in BMP signaling.

To definitively show that the craniosynostosis phenotype in Twist

heterozygous mice is mediated by activation of FGF signaling, a

transgenic mouse conditionally expressing the receptor tyrosine

kinase inhibitor, Sprouty1 (Spry1), was used. Conditional expression

of Spry1 was achieved by cre-recombinase-induced recombination

in which activation of CRE-ERT2 protein was inducible by

tamoxifen. Tamoxifen was directly injected into the sutures of

mice to activate conditional expression of Spry1 by CRE-ERT2.

Activation of Spry1 in Twist heterozygous mice resulted in almost
1292 TWIST IN LINEAGE DETERMINATION AND TUMORIGENESIS
complete inhibition of suture fusion in these mice. Therefore,

inhibition of FGF signaling prevented craniosynostosis in Twist

heterozygous mice [Connerney et al., 2008]. Further studies revealed

that ectopic expression of T/E heterodimers dramatically reduced

osteoblast differentiation and FGFR2 expression, whereas T/T

expression enhanced differentiation and FGFR2 expression.

Furthermore, overexpression of T/T homodimers in a wild-type

background resulted in a similar phenotype as Twist-1 haploinsuf-

ficiency, supporting the idea that the ratio of Twist heterodimers can

integrate signaling pathways, such as the FGF and BMP pathways,

and deregulate osteogenesis and cranial suture growth [Connerney

et al., 2008]. Further evidence that Twist influences BMP signaling

was illustrated in a study using an osteoblastic cell line, MC3T3E-1,

in which overexpression of Twist-1 suppressed BMP-induced

differentiation, whereas downregulation of Twist had the opposite

effect [Hayashi et al., 2007]. Twist-1 formed a complex with Smad4

and the corepressor HDAC1, suggesting that Twist-1 inhibits

expression of differentiation genes by recruiting HDAC1 to Smad4.

These effects were overcome by overexpressing Id1, which promoted

degradation of Twist-1 and positively regulated BMP signaling

[Hayashi et al., 2007].

Another signaling pathway that is important for regulating Twist

is the Wnt signaling pathway. Wnt signaling is extremely complex

and is essential for both chondrogenesis and osteogenesis. Wnt3a

can inhibit chondrogenesis and chondrogenic gene expression. Use

of a stable form of b-catenin revealed that this repression is through

the canonical Wnt pathway. Twist-1 is expressed in the limb bud

mesenchyme and overlaps sites of Wnt signaling [O’Rourke and

Tam, 2002; Reinhold et al., 2006]. Furthermore, in limb bud

mesenchymal cells, Twist-1 expression was induced by canonical

Wnt signaling and overexpression of Twist could inhibit chon-

drogenesis via reduced expression of aggrecan and collagen II,

whereas knockdown of Twist had the opposite effect. The same effect

was also evident when BMP2 was used to stimulate chondrogenesis,

as overexpression of Twist-1 inhibited BMP2-mediated chondro-

genesis. Therefore, Twist-1 is involved in Wnt-mediated inhibition

of chondrogenesis, although its mechanism of action in this process

remains unresolved.

Recent accumulative data illustrate that although Twist inhibits

osteogenesis, it enhances adipogenesis. A recent investigation of

brown fat metabolism in adipose tissue found that Twist is highly

expressed in this tissue. The transcription coactivator PGC-1a is a

central regulator in brown fat thermogenesis [Lin et al., 2005].

PGC-1a expression is highly sensitive to nutrient status. Over-

expression of Twist in a white fat preadipocyte cell line (3T3-L1)

did not affect adipocyte differentiation, which led to the conclusion

that Twist has no role in adipogenesis. It should be noted, however,

that in the same article, Twist transgenic mice displayed obesity

and increased weight gain when placed on a high fat diet as

compared to matched controls [Pan et al., 2009]. Twist hetero-

zygous mice were obesity-resistant and showed less lipid

accumulation in the brown fat. Moreover, expression of oxidation

genes was higher in brown fat with no effect on white fat. The

effect of Twist on energy dissipation was examined and revealed

that Twist inhibited PGC-1a-mediated transcription by directly

interacting with PGC-1a and suppressed expression of PGC-1a
JOURNAL OF CELLULAR BIOCHEMISTRY



target genes and mitochondrial biogenesis. Furthermore, Twist

inhibited PGC-1a-mediated histone H3 acetylation by recruiting

the histone deacetylase HDAC5. PPARd was associated with the

Twist promoter and directed Twist-1 expression in brown fat cells.

Because PPARd is a nutrient sensor, this network would allow

brown fat to respond to the body’s nutritional status [Pan et al.,

2009]. When overexpressed in human bone marrow MSCs, Twist

inhibited osteogenesis and chondrogenic differentiation, while

promoting adipogenesis [Isenmann et al., 2009]. This correlated

with an increase in the PPARg2 transcription factor and the

adipocyte-related markers leptin and adipsin. Therefore, it appears

that Twist expression is a positive regulator of adipose develop-

ment.

Conversely, earlier studies showed that when Twist-1 was

overexpressed in osteoblast cell lines they remained in an

undifferentiated state and their morphology changed from a

cuboidal osteoblast phenotype to a spindle shape fibroblast that

represented an osteoprogenitor cell [Lee et al., 1999]. In contrast,

knockdown of Twist-1 resulted in a cuboidal, differentiated-like

phenotype as compared to controls. These results correlated with a

change in expression of bone marker genes such as alkaline

phosphatase, type I collagen, and osteopontin. It is known that basic

FGF (bFGF) acts as a potent mitogen of osteoblast cells, increasing

the pre-osteoblast population and eventually bone formation

[Nakamura et al., 1995]. Very early populations of pre-osteoblasts

do not respond to bFGF, whereas more differentiated populations do

respond [Long et al., 1995]. In support of Twist promoting an

immature phenotype, it was discovered that Twist overexpressing

cells do not respond to bFGF, in contrast to cells in which Twist

expression was knocked down, which did respond to bFGF. The

latter finding gave support to the idea that Twist promotes a

premature osteoblast phenotype and can possibly de-differentiate

osteoblasts to a more progenitor-like state. A later study using a

novel subtraction hybridization cDNA library to characterize the

gene expression profile of purified preparations of prospectively

isolated human bone-marrow-derived MSCs revealed that Twist-1

and -2 were two of the highly expressed clones in this population

[Gronthos et al., 2003a]. MSCs that overexpressed Twist-1 and -2

had a higher proliferation rate and greater life span. Moreover, FACS

analysis revealed that both Twist-1 and -2 promoted higher

expression levels of the MSC-associated antigen, STRO-1, and the

early osteogenic transcription factors Runx2 and MSX2. This study

suggests that Twist promotes an osteo-progenitor-like phenotype

and maintains an immature mesenchymal precursor population

[Isenmann et al., 2009].

An area of future interest is to determine if Twist indeed plays a

role in stem cell maintenance. The putative role of Twist in stem

cell maintenance is of major interest because of its potential

use for optimizing the number of undifferentiated adult stem cells

for therapeutic applications, as well as elucidating stem cell

biology. Overall, it is clear that Twist can modulate signaling

pathways such as BMP and FGF; however, its role and mechanism

of action in regulating TGF-b, Wnt, and other pathways that

control MSC differentiation and/or maintenance remain largely

unexplored. Given the complexity of these signaling pathways

related to cell types, ligand specificities, differentiation status and
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experimental conditions, this area will be a challenge for future

studies.

TWIST: MASTER REGULATOR OF EMT AND ITS
ROLE IN TUMORIGENESIS

The process of epithelial to mesenchymal transition (EMT) occurs

during several stages of embryogenesis, wound healing, and

mammary gland development [Dvorak, 1986; Savagner et al.,

1994, 2005; Hay, 1995; Thiery and Chopin, 1999; Gammill and

Bronner-Fraser, 2003; Shook and Keller, 2003; Thiery, 2003; Fata

et al., 2004]. Moreover, an EMT-like process has been hypothesized

to occur in pathological conditions such as tissue fibrosis and tumor

progression of epithelial-based cancers [Savagner et al., 1994; Hay,

1995; Thiery and Chopin, 1999; Thiery, 2002; Kalluri and Neilson,

2003; Thiery, 2003; Agiostratidou et al., 2007; Kokkinos et al., 2007;

Moustakas and Heldin, 2007; Baum et al., 2008; Gavert and Ben-

Ze’ev, 2008; Turley et al., 2008; Yang and Weinberg, 2008]. EMT is

characterized by a loss of epithelial cell characteristics, such as cell–

cell and cell–substratum contacts; reorganization of the actin

cytoskeleton; and gain of mesenchymal characteristics, such as

loose organization and lack of contacts with neighboring cells. Thus,

EMT allows cells to undergo changes in shape and polarity, which

confer greater motility and the ability to penetrate through the

basement membrane, away from the epithelial layer, and into the

surrounding tissues (invasion). In cancer, the tumor cells in the

periphery of the primary tumor mass are thought to undergo an

EMT-like process that facilitates tumor cell invasion of the

surrounding tissues (stroma). Invasion then facilitates the subse-

quent steps of metastasis (intravasation into the blood circulatory or

lymphatic system, survival in the blood, extravasation into distant

tissues, and colonization of a distant organ). Highly invasive and

metastatic breast cancer cell lines possess characteristics of EMT

passage [Sommers et al., 1992; Thompson et al., 1992; Gilles et al.,

1999], and EMT passage-associated gene signatures have been

linked to invasive breast carcinomas and poor breast cancer

prognosis [Jechlinger et al., 2003; Zhang et al., 2005; Kleer et al.,

2007; Lien et al., 2007; Gavert and Ben-Ze’ev, 2008; Sarrio et al.,

2008; Yang and Weinberg, 2008; Weigelt et al., 2009]. Moreover,

EMT confers resistance to various cancer therapies [Sabbah et al.,

2008].

Twist regulates the expression of many genes involved in EMT,

allowing cells to undergo EMT passage. Twist is highly expressed in

invasive carcinoma and in highly invasive cell lines [Yang et al.,

2004; Mironchik et al., 2005]. In addition to conferring migratory

and invasive capabilities, Twist gives cells the ability to resist

apoptosis upon treatment with paclitaxel [Cheng et al., 2007;

Kajiyama et al., 2007] and cisplatin [Zhuo et al., 2008], as well as to

inactivate premature senescence in cancer cells [Ansieau et al.,

2008].

A vast amount of evidence points to the existence of cancer stem

cells (CSCs) within tumors and cancer cell lines [Reya et al., 2001;

Clarke et al., 2006; Li et al., 2007; Lobo et al., 2007; Cariati and

Purushotham, 2008; Hurt and Farrar, 2008]. In addition to enabling

metastasis, Twist-induced EMT passage can induce the generation of
TWIST IN LINEAGE DETERMINATION AND TUMORIGENESIS 1293



breast CSCs from differentiated epithelial cancer cells [Mani et al.,

2008; Morel et al., 2008; Santisteban et al., 2009]. Moreover, unlike

the rest of the cancer cell population, breast CSCs display the

mesenchymal morphologic and phenotypic characteristics of cells

that have undergone EMT passage, including high expression of

Twist and other genes involved in motility, invasion, resistance to

apoptosis, and ECM remodeling [Al-Hajj et al., 2003; Sheridan et al.,

2006; Stingl et al., 2006; Liao et al., 2007; Liu et al., 2007; Shipitsin

et al., 2007; Stingl and Caldas, 2007; Mani et al., 2008; Hennessy

et al., 2009]. Because breast CSCs possess EMT-passage character-

istics and the self-renewing and differentiation capacities needed to

seed new tumor growth and differentiate into a heterogeneous

population of tumor cells [Al-Hajj et al., 2003; Mani et al., 2008], it is

likely that they are responsible for breast tumor cell dissemination

and distant tumor formation during breast cancer metastasis

[Brabletz et al., 2005]. According to this model, normal mammary

stem cells may become transformed, undergo EMT and generate

breast CSCs, which may represent the disseminating population

during cancer metastasis. Alternatively, differentiated, transformed

breast epithelial cells may undergo EMT and, as a result, acquire

stem-cell-like properties, disseminate to distant organs and seed

secondary tumor growth.

In contrast to the reported role of Twist-mediated EMT in CSC

generation, Twist has been shown to induce a breast CSC phenotype

through downregulation of CD24 cell surface expression indepen-

dently of EMT [Vesuna et al., 2009]. Therefore, Twist may enable

stem cell function via EMT-dependent and -independent pathways.

Altogether, Twist inhibition, as a therapeutic modality, may

represent an ideal approach to directly target breast CSC function

and, consequently, prevent tumor growth initiation (at primary and

secondary sites) and tumor relapse due to therapeutic resistance.

FUTURE DIRECTIONS

Future studies will undoubtedly decipher the role of Twist in

regulating the complex signaling cascades associated with MSC

differentiation into various lineages. Of vital importance to

understanding the functions of Twist, however, is determining to

which regions of the genome Twist is recruited and if these regions

are binding sites for Twist or binding sites for other factors essential

for MSC differentiation. Furthermore, understanding the role of

Twist in the regulation of CSC function will uncover novel factors

involved in stem cell self-renewal and differentiation, as well as

factors that could potentially be used as therapeutic targets. The

most critical problem facing stem cell therapy today is the limited

number of ex vivo expanded adult progenitor cells available for

transplant studies. Therefore, identification of genes involved in

self-renewal and differentiation will greatly benefit the field of stem

cell therapy.

In tumor models, Twist inhibition should help prevent EMT, cell

migration, and invasion, as well as sensitize tumor cells to

chemotherapeutic agents such as paclitaxol. In addition, stem cells

are currently being tested as vehicles to target therapeutics agents to

tumor cells. Stem-cell-mediated delivery of Twist inhibitors may

prove to be a useful approach to prevent metastasis of invasive
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tumors. A recent review cites 22 preclinical studies describing the

use of neural orMSCs for cancer therapy [Aboody et al., 2008]. These

studies document the remarkable tumor-tropism of normal human

stem/progenitor cells and describe the use of neural or MSCs to

deliver therapeutic gene products selectively to various types of

solid tumors. If successful, the use of targeting Twist inhibitors with

a stem cell delivery vehicle as a therapeutic strategy will create a

new paradigm for cancer treatments by eliminating the toxic side

effects commonly experienced by high-dose chemotherapeutic

regimens. Overall, improved survival combined with fewer side

effects from treatments will positively impact clinical cancer care.
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